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ABSTRACT

The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries
to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The
areas investigated include the formation of the plasma sheath from current-induced individual
wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the
dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative
change in the dynamics with increasing wire number was observed, corresponding to a transition
between a z-pinch composed of non-merging, self-pinching individual wires, and one
characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A

sharp increase in radiated power with increasing wire number has been observed experimentally
near this calculated transition. Although two-dimensional codes have correctly simulated
observed power pulse durations, there are indications that three dimensional effects are important
in understanding the actual mechanism by which these pulse lengths are produced.
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1. Introduction.

The Total Immersion PIC (TIP) code has been used in several geometries to understand
better the measured dynamics of annular, aluminum wire-array z-pinches [1,2] on the Saturn [3]
accelerator. The areas investigated include the formation of the plasma sheath from current-
induced individual wire explosions, the effects of wire number and symmetry on the implosion
dynamics, and the dependence on wire number of the Rayleigh-Taylor (RT) instability growth.
An attempt is made to assess the sensitivity of the radiation pulse duration to phenomena
occurring in the various geometries.

TIP, described briefly in the appendix, is a particle-in-cell MHD code with heat conduction,
Plankian radiation production and diffusion, and a current equation which couples the plasma to
an external circuit. Versions exist in three 2-D geometries: (x,y), (r,z) and (r,0). TIP is a “table
top” code which is easy to modify, robust, and quick to run, but whose radiation, equation of
state, and opacity models are relatively simple. For this reason, the examples presented here
should be interpreted as qualitative guides to possible pinch behavior rather than exact numerical
predictions of experimental data.

2. One dimensional benchmark.

A one dimensional z-pinch simulation, depending only on the radius and time, is presented
as a benchmark. The parameters, used here and throughout the report, are:

Pinch length: 2 cm

Wire mass: 615 µg of aluminum

Initial annular wire radius: 8.75 mm

Radius of the eight current-return posts: 16.5 mm

External circuit parameters: L = 10.4 nH, R = 1/6 Q.

The initial sheath profile is a Gaussian with a millimeter FWHM. The series circuit consists of a
voltage source (tabular Saturn voltage as a function of time), an external resistor and inductor,
and a plasma load [4].

Figs. la and lb show the time history of the one-dimensional pinch. The radiation plays a
small role until near peak compression when it becomes the means by which the plasma sheds
the internal energy produced by stagnation, compression, and Joule heating. Several bounces are
observed, but these are small and damp rapidly. Figure lb gives the energy budget. There is a
rapid (-0. 1 nsec) rise of the radiation pulse as the thin sheath (<O.1 rnm thick) stagnates on axis
at speeds of roughly 100 c@.Lsec. This enormous, power (-2500 TW! ) is nonphysical, but is
typical of 1-D simulations. If the radiation production is artiilcially turned off, the pinch retains
enough thermal energy to rebound and undergo a more leisurely re-compression, as in Fig. lc.
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Figure 1. a) 1-D Radius, Current, Voltage. b) Energy: Inductive (plasma+ vacuum magnetic and
external inductance), resistive (external resistor), plasma (internal+ kinetic+. trapped radiation),

radiated. c)Radius, Current, Voltage, no radiation.
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3. Sheath formation with the (r,(3)code.

The pinch begins with thecurrent-induced explosion of an a.rumlar multiple wire array.
Single wire behavior, shown in Fig. 2, is modeled with 1-D Lasnex to take the wires from their
cold, solid state to an expanding plasma, at which time TIP is used to begin simulating the
multiple wire array. The current is approximated by a linearly rising prepulse similar to that
measured [1], which begins at -100 ns and rises to 100 kA at t=35, at which time the full Saturn
current has begun to rise. Four cases are considered: 10, 20, 40, and 120 wires with the initial
parameters given above. The wire diameter is adjusted to give equal total mass and the
appropriate fraction of the total current flows through each wire. The individual wire expansion
is followed with Lasnex until its outer edge is half the distance to its neighbor. For example, with
an 17.5 mm diameter, the array circumference is about 55 mm. For 20 wires, this gives an inter-
wire spacing of 2.75 mm. The TIP simulation for this case begins when the individual wire
diameter is half that, or 1.375 mm. This defines the initial time and current, along with radial
density, temperature, and velocity profiles from Lasnex, for the (r,e) TIP simulations. Periodic
boundary conditions in theta are imposed.

0.2 —

Air 10r

I
0.05

1

u -II I I I I I I I

–100 –75 –50 –25 O 25 50 75 100 125
time (m)

Figure 2. Lasnex simulations of individual wire expansions corresponding to pinches
indicated number of wires.

with

The wire merging and sheath formation is illustrated in Fig. 3 for three of the four cases. In
the 10 wire simulation, the individual self-pinching remains sufficiently vigorous that the wires
never merge into a continuous sheath. When a sheath does form in the 20, 40, and 120 (not
illustrated) wire cases, there is considerable azimuthal “sloshing” of the density. Because the
plasma viscosity is low (water “sloshes” whereas viscous honey “settles”), these density standing
waves persist well into the compression. Periodicity in fl is imposed.
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Figure 3. Snapshots of plasma during sheath formation and implosion for 10,20, and 40 wires.
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A time history of the average sheath thickness (FWHM) in the radial direction is given in
Fig. 4. The thickness of the imploding sheath is seen to depend inversely on the number of wires
before about 75 ns. The thinnest sheath belongs to the 120 wire case, the thickest to the 10 wire
case, although this has not actually formed into a continuous sheath. After 75 ns, when the sheath
has reached 5 mm (see Fig. la), this difference has all but vanished and all sheaths are about 0.1
mm thick and decreasing.
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Figure 4. Average sheath thickness (FWHA4) for 10,20,40, and 120 wires.

Amass-weighted measure of the azimuthal density variation of the sheath, w, is defined by
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These deftitions eliminate the vacuum, p=O, from the computation. A plot of w is shown in Fig.
5. The numerical index L corresponds to angle, while M corresponds to radius. VO1(L,M) is the
volume of a numerical grid element. AU four cases start with the wire ftig roughly half the
available space, so their initial variations are equal. The sheath uniformity for the last three cases
is seen to approach essentially the same value by about 70 ns. The 10 wire case, since it never
does merge, retains the z variation it had initially. The counter-rotating density pulses
notwithstanding, the sheaths are seen to achieve a fairly high degree of azimuthal uniformity in
all cases.
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Figure 5. Azimuthal variation W (defined in eq. I) of the sheath for IO, 20,40, and 120 wires

Figure 6 shows both the mass density and current density during the merging and sheath
formation for the 20 wire case. The initial current density is clearly quite different from the one
dimensional approximation in that current flows only on the outer half of the wire. Unlike the 10
wire case, the 20 wires physically merge before the tendency to self-pinch, altered by the one-
sided magnetic force, reasserts itself. In this geometry, the field is stronger where the plasma
bulges outward so it tends to smooth radial irregularities, quite unlike the growing instabilities
which, as will be examined later, sre present in (r,z).
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Figure 6. Mass density (line contour) and current density (solid contour) for 20 wires at I, 12,
24, and 29 ns. The horizontal axis is degrees, the vertical axis is radius in-mm.

Two issues which could affect radiation production are raised by these (r,q) simulations. The
fwst is the possible failure to merge into a sheath during the radial compression. The second,
because fewer wires produce thicker sheaths, is the effect of the early time sheath thickness on
the subsequent development of the RT instability. These issues are now addressed.

4. Behavior in the (Ly) plane.

One of the important early observations from our multiple wire z-pinches was the presence
of a sharp increase in the radiated power when the initial inter-wire gap fell below about 1.4 mm,
corresponding to about 40 wires [1]. Referring back to Fig. 2, Lasnex simulations indicate that
larger diameter wires expand at f~st but then self-pinch as the current rises. Smaller diameter
wires, however, continue their expansion into the large current regime. For the experimentally
generated current pulses, the transition occurs at around 40 wires. These simulations, being one
dimensional, did not take into account the two dimensional exclusion of the magnetic field from
the interior of the wire array and the resultant weakening of the magnetic force on the inside, but
they were suggestive of a qualitative change in behavior around this wire number. In the (r,f3)TIP
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simulations using Lasnex for initiation, the expansion reversal seen in the 1-D runs was observed
with the full wire array, with the caveat that, if the expanding wires physically touched before re-
compression, they did not necessarily self-pinch, but rather formed into a sheath.

The wire expansion behavior depends critically on the resistivity. Getting this right through
a regime which starts as cold, solid metal wires and ends as a several eV plasma orders of
magnitude lower in density, is a challenge. About all one can do is take the best models available
and perform a parameter study to determine the sensitivity to questionable parameters. The
outcome of just such tests indicate considerable sensitivity to the resistivity in the explosion
dynamics. For this reason, the results presented here should be viewed more as qualitative
indicators of expected behavior than as precise predictions. For example, the numerical
simulations have the wires merging at about 20 wires, rather than the roughly 40 suggested by
the experiments The important conclusion is that this qualitative change in behavior can occur,
even if these 2-D simulations fail to predict the exact number of wires at which it happens.

The (x,y) code, rather than the (r,O), is used to simulate the entire multiple wire pinches for
several reasons. It eliminates the troublesome numerical singularity at the origin which plagues
(r,O) codes. It also allows for a natural treatment of azimuthal asymmetries, which are, in fact,
present even in the simplest case. One cause of asymmetry is illustrated in Fig. 7 which shows
the early-time magnetic field for a ten wire pinch in which the eight current return posts are
visible. Since no current flows at radii less than the wire array, there is no B o in the interior.

Post

Figure 7. Contours of constant vector potential, AZ, at early times showing 10 wire and 8 post

locations. The wire array radius is 8.75 mm; the posts are at 163 mm.
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Figure 8 shows the time history of 10 and 20 wire pinches, along with a uniform plasma
shell. The latter should, and does, reproduce the 1-D behavior of Fig la. Unlike the (r,6)
simulations in which 1-D Lasnex runs were used as initial conditions, in these simulations the
initial wire confQuration is taken simply as a lmm FWHM Gaussian at leV with no initial
velocity and no precursor current. Even so, the results are quite similar. As we saw in (r,fl), single
wire simulations are good predictors of behavior even though the field is no longer symmetric.
The 10 wires self-pinch stilciently rapidly that they do not merge until very near the center,
while the higher wire numbers form an imploding sheath.

Figure 8. Density contours when the sheath is at 8.75,5,2 mm radius and at peak compression
for a) 10 wire, b) 20 wire, and c) unij$orm densi~ shell. Apparent rotation is a numericaiartfact.
The current-return posts are not shown in this, and subsequent (x,y) plots.

In TIP, all the information resides in the particles. The grid is superimposed at each time step
to compute ensemble averages. To eliminate “imprinting” the numerical grid on the physics, the
(x,y) mesh is defined each time step at both a random location and with a random angle. This

numerical artifact causes the apparent rotation of the wire implosion in Fig. 8.

The actual behavior of the pinch could be strongly affected by RT instabilities in the z
direction, so one would not expect it to follow the illustrated behavior throughout the implosion
Nonetheless, these simulations suggest a reason for the observed qualitative change in behavior
as the wire number increases past 40. That is, it marks the transition between a convergence of
individual, non-merging, wires each of which is undergoing its own mini-pinch, and the
implosion of a continuous (at least in its ability to carry current) plasma sheath.

Figure 9 gives the mass-averaged radius, current, and voltage for the 10 wire array. Figure
10 gives the radiation pulse for all three cases. Notice that although more radiation is produced
with the more symmetric geometry, the pulse duration is very narrow in all instances, much like
the 1-D result. Comparing these with the 1-D simulation, Figs. la and b, shows just how little the
number of wires tiects either the gross dynamics or the radiation pulse duration, at least in the
absence of RT instabilities.
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5. The Rayleigh-Taylor Instability.

In this section, RT instability growth is examined using (r,z) TIP. Clearly, unless some initial
perturbation is imposed, the behavior will simply reproduce the 1-D results. The perturbation is
typically an initial random density variation. With an appropriate choice for the magnitude of this
random density perturbation, Jim Hammer [5] showed that the growth of the RT instability, and
the resultant increase in the thickness of the plasma sheath at the time of stagnation, can account
for the width of the radiation pulse measured for our 90-wire implosions [4]. The dependence of
such RT growth on a wide range of initial sheath densities and radii has been studied by Darrell
Peterson [6]. His pulse width analysis, keeping the density perturbation fixed, is found to be in
excellent agreement with our measured widths in the many-wire, plasma sheath regime [2]. For
these TIP runs, a 10% random cell-to-cell density variation is imposed. Only 6 mm of the full 20
mm is simulated and periodic boundary conditions in z are imposed.
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Figure 11. Density contours at average pinch radius of 8.25,5.0,3.0, and 0.5 mm showing RT
growth for an initial sheath FWHM of (j?om top) 1, 1/3,3 mm. The “bubbles” break through
afier the last frame, cutting the current path. Units are mm.
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Asdiscussed in Section3 (Fig. 4), diiYerent wire numbers produce early-time sheaths of
differing thickness. To see what effect the sheath thickness has on RT growth, three thicknesses
are simulated in (r,z). Figure 11 shows these simulations. Figure 12 plots the average sheath
thickness (FWHM) while Fig. 13 gives Darrell Peterson’s “involved mass” [8] for the three
cases. Involved mass measures the radial spread in the sheath caused by the growing instability,
and is defined analogously to (1) except that the variation is in radius rather than azimuth. As can
be seen in these figures, the RT appears somewhat earlier with the very thick sheath,
corresponding to fewer wires in the (r,O) calculation, and then grows at about the same rate,
causing the implosion to be disrupted sooner. The pattern, however, does not persist, and may
even reverse. For the two thinner sheaths, the RT growth is virtually the same, if anything,
growing a bit faster for the very thin sheath.

3

2.5-
Thick

R 2-
g

z ‘-’i

T=a
I

\ J“
v 1

1 I 1 I I 1 I Io 10 20 30 40 50 60 70 80 9
Time (ns)

Figure 12. Time dependence of sheath thickness (FWHM) for diflerent initial thickness.
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Figure 13. Involved mass for different initial sheath thickness.
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What happens when the “bubbles”, those large voids ballooning into the center in Fig. 11,
break through to the extent that the current path is interrupted? In TIP, the plasma is represented
by numerical fluid “particles” and when the last particle leaves a cell, there is no mechanism by
which current can be carried in that cell. In 2-D, no alternate path exists. Since current continues
to flow in the experiment, a problem arises as to how this current flow should be handled to allow
the simulation to proceed. The situation is rather bizarre in that Spitzer resistivity is a function

only of the temperature, being independent of density (what about p= 10-10 or even O?). One
method of overcoming this in 2-D Eulerian codes, in which density is computed from difference
equations and is, in general, not identically zero, is by deftig a cutoff density for the plasma
conductivity [8]. Care must be taken in doing this. If the cutoff is too large, the current path will
be broken, as in TIP. If is too small, the “vacuum” conducts virtually everywhere and the current
flows along the upper numerical boundary, never influencing the plasma. If, however, it is
chosen within acceptable bounds, current can flow across the very low density regions in the
bubbles, short circuiting the instability, and allowing the simulation to proceed. It seems
plausible that, in reality, the breakthrough of these bubbles indicates the onset of three
dimensional behavior in which the current seeks an alternative path at a different azimuth. Other
explanations, such as the formation of 2-D ion or electron diodes across bubbles, do not appear
to offer viable alternatives. While the 2-D simulations do a good job of reproducing some of the
experimentally observed behavior [2], a better understanding of where current actually flows in
the experiments probably requires the third dimension.

In the simulations in Fig. 11, the average sheath thickness grows to about 2 mm. If it retains
this spread, hits the center near the experimentally observed 50 cm /~sec, and if radiation is
produced as plasma thermalizes on axis, a pulse duration of some 4 ns (2 mm/(0.5 mm/ns)) would
be expected. This duration is close to the observed value for our highly symmetric 90-wire shots
[4], and is the mechanism believed responsible for the observed pulse width.

The m=O, or sausage, instability on the sheath (as opposed to individual wires individual
wires), caused by the l/r dependence of the magnetic field, produces behavior similar to the RT.
Any radial perturbation on the outer sheath creates a stronger magnetic field at the “valleys” than
at the “peaks”, increasing the disturbance. To determine which is most responsible for the bubble
and spike development seen in Fig. 11, the growth rates of the two instabilities are compared.
The RT growth rate, M, and the m=o growth rate, ym, are approximated by

(2)

where k is the RT wave number, B is the magnetic field, R is the average plasma radius, p is the
average plasma density, and “a” is the acceleration given by JxB/p. Assuming J flows uniformly
in a plasma with sheath thickness “h”, their ratio is found to be

(3)
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When R is larger than the RT wavelength and h, such as during the implosion, the RT dominates.
To see how much the m=o contributes, the vacuum magnetic field, rather than being ~1/2rcr, is
set to pJ./27cR. The field has the same average value, but the local l/r dependence is removed,
eliminating the m=o instability. This definition of B is used only in the force equation; the actual
value is still used to calculate the inductance. Surprisingly, the m=O is found to play almost no
role! As seen in Fig. 14, which gives the involved mass for the two cases, the RT instability

growth is virtually untiected by the other instability. The slight difference in the curves is
caused by small differences in the overall motion with the numerically altered field deftition.

No m=O% 1-

2
(thin)

m

~
0

& 0.5-

0-L A--~ I
60 65 70 i5 80 <

Time (m)
Figure 14. Involved mass, normal (thick) and with m=O instability numerically removed (thin).

6. Symmetry breaking.

There are many ways (other than the eight current-return posts) the symmetry of the wire
array pinch can be broken. In this section, the effect of several of these ways on the implosion
and subsequent radiation production is examined. The benchmark is the inftite wire implosion
illustrated in Fig. 8c. The duration of the radiation pulse is used as a performance metric.

Suppose the initial wire array is offset 2 mm with respect to the current-return posts. Figure
15 shows this case when the imploding sheath has reached a diameter of 4 mm. Notice the
evidence of the initial post proximity. Asymmetry can result from a missing wire, as in Fig. 16,
where the 20-wire pinch in Fig. 8b has lost one of its members. Because all current-carrying parts
attract each other, the sheath acts like a stretched rubber band. When a piece is missing, the
sheath circumference opens up as it implodes. Figure 17 shows a 20-wire pinch in which each
wire is given the rather sizable random variation in its initial position equal to 10% of its distance
to the center. Finally, although not stictly speaking a symmetry breaking, the pinch could have
some initial rotation. A simulation was also run of the uniform ring rotating at 0.1 crn/Wec.
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Figure 16. The20 wirepinch with onewire missing .Initiai average radius is8.75 mm. The
apparent rotation in this and Fig. 17 is a numerical artifact caused by random grid orientation.
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Figure 17. A 20 wire pinch with individual wires randomly displaced by 10% of their radius.
Initial average radius is 8.75 mm.

The radiation power pulses for these four simulations, along with the infinite wire case, are
shown in Fig. 18. Not surprisingly, large asymmetry or deviation from the uniform, motionless
initialization results in reduced overall energy being radiated. The pulse has been lengthened to
about 3 nsec in both the missing wire case and the random wire placement case, but not in the
rotation or offset. The asymmetries in theses numerical examples are larger than would normally
be expected experimentally. If, however, the breaking of the current path does produce 3-D
behavior, perhaps asymmetries of this magnitude could be produced. One case was studied
experimentally, albeit inadvertently. Signd3cantly reduced power output (-75%) was observed
when a single wire in a 90-wire array broke and did not participate in the pinch [13,14].

The code has been used to examine possible radiation pulse broadening mechanisms
involving other physical mechanisms. None have been found to be viable. The electric fields
were found to be insufficient to produce signiilcant numbers of runaway electrons [9]. Nor does
a proposed (by Marder) “therrnalization time” caused by ions passing through each other on axis
due to their high temperatures and large relative velocities, seem to extend the pulse to anywhere
near the amount observed. The conclusion, then, is that, aside from RT growth in the (r,z) plane,
large asymmetry in the (x,y) plane is the only other mechanism found with the 2-D TIP code to
broaden the sheath to values approximating the experiment. Just how important these
asymmetries are, or if they are important at all in the experiments, is as yet unclear.
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As always, it is important to remember that in all these (x,y) simulations, RT instabilities are
expected play a dominant role long before the radiation pulse is produced. The pulse width
shown here is a numerical metric, @ a physical prediction.
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Figure 18. Power pulses $-orn the
random wire placement, 1 out of 20

7. Conclusions.
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86 87
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By using TIP in different geometries to follow the behavior of a pinch formed from
individual wires, the following observations can be made.

1. In contrast to the violent growth of instability in the (r,z) plane, the behavior in the
(x,y) plane is quite benign. This contrast indicates that the z-pinch dynamics are dominated by
RT instability grOWth.

2. For very sparse arrays, the wires can implode individually, never merging until
essentially on axis. Increasing the wire number results in a continuous imploding plasma sheath.
This qualitative difference could explain the sharp increase in radiated power as the number of
wires passes 40. However, although the simulated radiated energy is somewhat lower with
individual self-pinching wires than with a sheath, the radiation pulse duration remains very short.
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Thus, the actual mechanism by which this qualitative difference manifests itself in a longer pulse
must be found elsewhere, probably RT growth in (r,z) arising from 3-D effects in the explosion
and merging of the individual wires [10]. Any asymmetry in the (x,y) plane degrades the
performance, both in absolute radiated energy and the pulse width, although unless the
asymmetries are large, the radiation pulse widths tend to be quite narrow.

3. The breaking of the current path caused by RT instability growth in two dimensions
probably signals the onset of three dimensional behavior, although some 2-D codes can be made
to continue running by allowing current to flow in very low density regions. If this 3-D behavior
occurs, it could produce asymmetries analogous to the 2-D cases examined here and could
thereby broaden the pulse width. Without fm evidence that these asymmetries actually occur,
however, the hypothesis that the long (> 5 ns) radiation pulse widths are caused by RT
broadening of the sheath remains unchallenged by anything in these studies.

A personal note.

So much of this work was made more relevant, productive, and enjoyable because George
Allshouse was a collaborator on it. His untimely death earlier this year robbed us not only of a
friend but of an invaluable source of physical insight, numerical savvy, and plain good sense.
This paper is dedicated to his memory.

Appendix. A brief description of the TIP code.

Total Immersion PIC is a fluidparticle in cell code in which “particles”, representing fluid
elements, carry virtually all the information. Particles are assigned mass, position, velocity,
volume, internal energy, radiation energy, and either magnetic flux or vector potential. Quantities
which are naturally advected, such as mass, energy, or magnetic flux, are simply carried by the
moving particles. The grid is used to compute ensemble averages, such as density, and to solve
elliptic diffusion equations. It is defined at each time step at a random location and (where
applicable) orientation so as to extend just past the particles. Each particle transfers momentum
and energy flux across grid boundaries in a manner appropriate to the current value of its
thermodynamic vwiables. This accumulated flux is then redistributed to other particles in a
strictly conservative manner. The elliptic equations required for heat conduction, radiation
transport, and field diffusion are solved exactly using a block Thomas algorithm. While an exact
solver may take a bit longer, it eliminates both the inaccuracy inherent in a f~ed error bound or
maximum number of iterations, and the possible (and, therefore, inevitable) failure of iterative
schemes to converge. Spitzer resistivity and heat conduction are used, with the ionization and
speciilc heat determined as a function of temperature from Mosher [11]. Rosseland and Planck
opacities are found using density and temperature functional fits to XSN data. Radiation is a
single energy group, flux-limited diffusion model. The plasma resistance and inductance are
obtained from energy integrals. These, along with an external resistor, inductor, and voltage
source are used in a total energy conservation equation to update the current at each time step.
TIP exactly conserves mass, momentum, and energy in all three geometries.
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A key feature of TIP is the artificial viscosity used to treat shocks, essentially the GAP [12]
smoothing algorithm in which particle velocities are relaxed in a prescribed manner toward some
average value. The subsequent decrease in kinetic energy is then returned to the particles as
internal energy, simulating a true entropy-generating viscosity in a very intuitive way. The basic
TIP philosophy is to include all relevant physical phenomena, but to use the simplest available

approach to each. More details about the code are given in Appendix III of Ref. [9].

The most important numerical difference between the (r,z) and the other two versions is that
the former solves for the magnetic field, Be, while the other two solve for the vector potential,

& To illustrate the functional equivalence of the three code versions when solving similar

problems, Fig. 19 plots the radius versus the for five cases considered in this paper: the 1-D
pinch (r,z), the 2-D pinch in (r,z), the smooth, infinite wire pinch in (x,y), the 10 wire pinch in
(x,y) and the 10 wire pinch in (r,O). As the figure indicates, when solving equivalent problems,
the three versions give essentially equivalent results.
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Figure 19. Radius versus lime for equivalent runs in difierent geometries.
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